

Integrity ★ Service ★ Excellence

Development of Improved Accelerated Corrosion Qualification Test Methodology for Aerospace Materials

18-20 Nov 2014

Chad N. Hunter
AFRL Corrosion IPT (AFRL/RXSS)
Air Force Research Laboratory
Materials and Manufacturing
Directorate

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, inclu- ion of information. Send comments a arters Services, Directorate for Infor ny other provision of law, no person	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE NOV 2014		2. REPORT TYPE		3. DATES COVE 00-00-201 4	red to 00-00-2014		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Development of Improved Accelerated Corrosion Qualification Test					5b. GRANT NUMBER		
Methodology for A	erospace Materials	5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT NUMBER			
				5e. TASK NUMBER			
					5f. WORK UNIT NUMBER		
Air Force Research	• /	odress(es) ials and Manufactu RL/RXSS),Wright I	U	8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO ASETSDefense 201 Myer, VA.		ace Engineering for	Aerospace and I	Defense, 18-20	0 Nov 2014, Fort		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITA				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 38	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements

- Jeremy Angel
- Wes Barfield
- John Brausch
- Diane Buhrmaster
- Charlie Buynak
- Angela Campo
- Doug Dudis
- Dave Ellicks
- Walt Griffith
- Doug Hansen
- Scott Hayes
- Nick Heider
- Ed Hermes
- Bill Hoogsteden
- Doug Hufnagle
- Nick Jacobs

- Kumar Jata
- Walter Juzukonis
- Wendy Kessen
- Scott Lanter
- Eric Lindgren
- Merrill Minges
- Larry Perkins
- Leanne Petry
- Dave Rose
- Mike Spicer
- Aaron Stenta
- Darryl Stimson
- Steve Thompson
- Gary Waggoner
- Nick Wilson
- Yuhchae Yoon
- AFRL Corrosion IPT

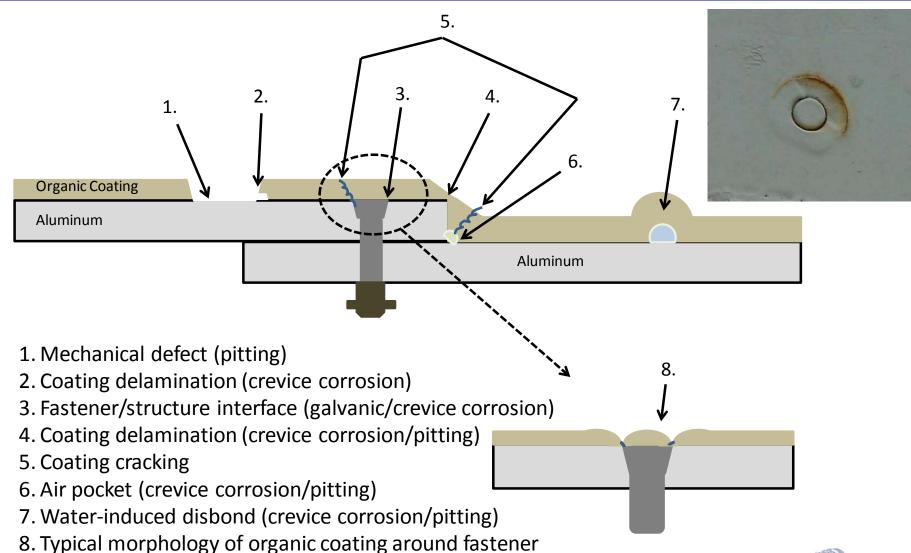
Outline

- Motivation for effort/background
- Aircraft organic coating failure mechanisms
- State of the art corrosion testing and characterization of organic coatings- deficiencies
- AFRL efforts to address gaps:
 - AFRL SERDP project
 - SBIRs
 - AFRL in-house program, "Structural Component Corrosion Simulation"
- Conclusions

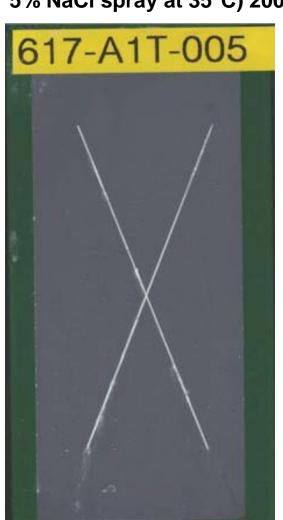
Motivation/Background

- Weapon system corrosion performance requirements:
 - New acquisition-design, intended environment and expected service life taken into account
 - Legacy systems
 – field/depot maintenance, material substitution/replacement
- Driven by several synergistic factors including:
 - Environmental regulations and high corrosion costs (DoD-wide),
 - Requirement to account for corrosion in management of structures (MIL-STD-1530C, Aircraft Structural Integrity Program, Air Force-specific but approaches could apply to other services)
 - Improved performance
- Current accelerated laboratory methodology inadequate to predict performance with relevant degradation modes
- Long-term outdoor exposure is current best practice for performance prediction, but takes 1 year+ and doesn't mimic service conditions precisely

Background- Air Force Requirements


- MIL-STD-1530C (Aircraft Structural Integrity Program), Section 5.1.5 requires the establishment of a Corrosion Prevention and Control Program
 - 5.1.5.1 Corrosion Prevention and Control Plan
 - 5.1.5.2 Evaluation of Corrosion Susceptibility (accounting for base metals, coatings, sealants, service environments & maintenance practices, etc.)
- "Materials and processes, finishes, coatings, and films which have been proven in service <u>or by comparative testing</u> <u>in the laboratory</u> shall be selected to prevent corrosion..."
- There is currently no way to reliably meet the above criteria for emerging environmentally-compliant coatings M&P!

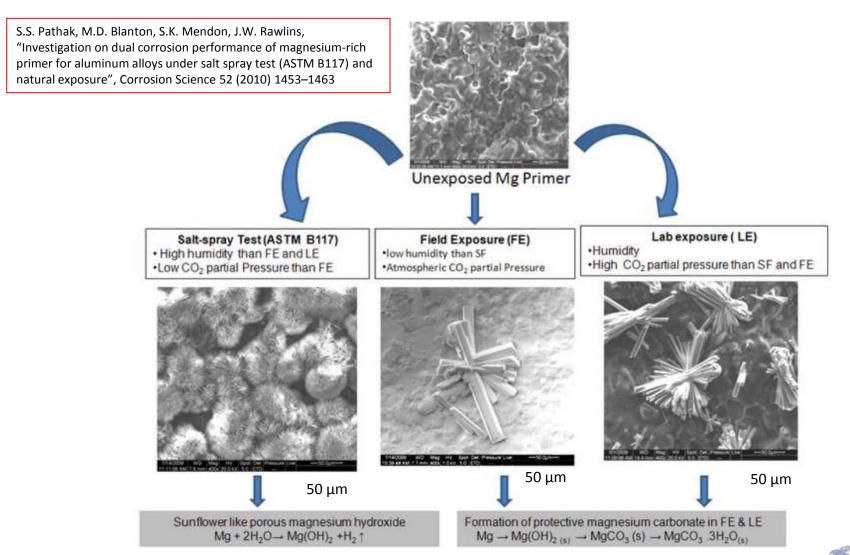
Coating Degradation Mechanisms



Corrosion Testing and Characterization of Organic Coatings- Deficiencies

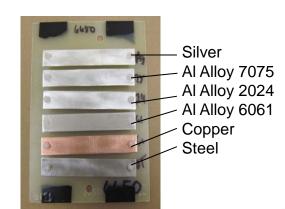
Laboratory salt fog (ASTM B117, 5% NaCl spray at 35°C) 2000 hrs

Outdoor Exposure After 3+ Years At Daytona, FL (Failure <1 year)



בוסודום וואוסודום או בארבויים או באר או אויסודום או אויסודים איסודים אויסודים אויסודים איסודים אויסוד

Mg-rich primer degradation mechanisms


AFRL SERDP Project

- AFRL project proposed against 2009 Strategic Environmental Research and Development (SERDP) Statement of Need "Dynamic Accelerated Corrosion Test Protocol"
- Bare and coated metal samples exposed:
 - At 8 outdoor test sites
 - Laboratory, ASTM B117 salt fog
 - Laboratory, ASTM B117 salt fog with UVA irradiation and ozone gas
- Cumulative damage model for predicting atmospheric corrosion rates of 1010 steel was developed using inputs from weather data:
 - Temperature,
 - Relative humidity (%RH)
 - Atmospheric contaminants (chloride, SO₂, and ozone) levels

AFRL SERDP Project - Results

 AgCl film develops on Ag coupons exposed in modified B117 lab test with UV/ozone and outdoors, much higher than what occurs in ASTM B117

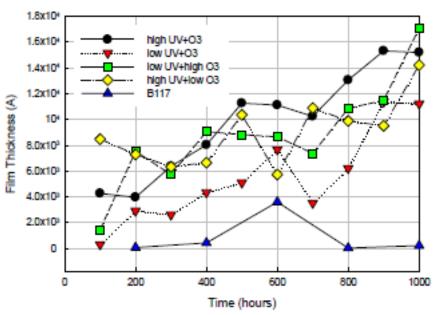


Figure 53. AgCl film thickness measurements on pure silver coupons as a function of exposure condition (UV/ozone) over 1000 hours in the modified exposure chamber and the B117 test chamber.

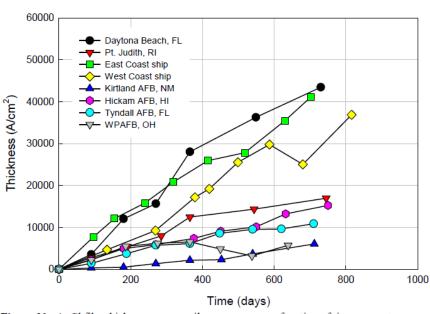


Figure 20. AgCl film thickness on pure silver coupons as a function of time over a two year period at all exposure sites.

AFRL SERDP Project - Results

Pt Judith 2 Years

West Coast Ship 2 Years

9/1-A1G-006 B117 A1A014 A1A015 400 Hours

Pt Judith 2 Years

Low UV/High O₃ 400 Hours

B117 400 Hours Low UV/High O₃ 400 Hours

Mg rich system

Cr system

AFRL SERDP Project - Results

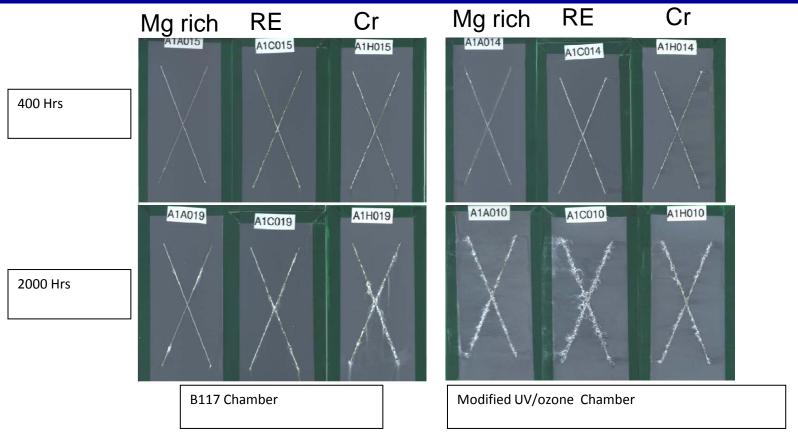


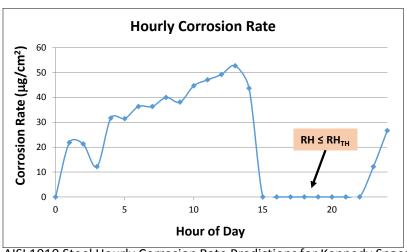
Figure 60. Side-by-side chamber exposure comparison of the three coating systems on AA2024-T3 panels at (top) 400 hours and (bottom) 2000 hours exposure in the modified UV/ozone and B117 chambers, respectively. Panel coating designation code: A1A: magnesium rich coating system; A1C: rare earth conversion coat (RECC) system; A1H: full chromate coating system.

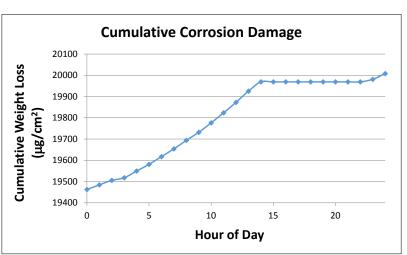
- Corrosion of coated panels in outdoor environments: strong correlation to elevated T and % RH
- Cumulative amount of time coated panel is exposed to damaging environments was dominant factor in corrosion severity
- Degradation of polyurethane topcoat observed (FTIR analysis)
- UV and ozone under constant salt fog on coated panels in laboratory was much more damaging than 2 years field exposure
- Promising results; further development of laboratory apparatus and improved methods needed

Cumulative Damage Model for Prediction of Atmospheric Corrosion

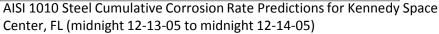
- There are 3 principal boundary conditions
 - The corrosion rate equals zero when:
 - Relative humidity drops to a threshold value, RH_{TH}
 - 60% RH for iron and steel*
 - Temperature drops to freezing or below
 - · Contaminant level falls to zero
- A piecewise function is used to implement the temperature and RH boundary conditions $Ki = \begin{cases} f(T,RH,CI,SO_2,O_3), RH > RH_{TH} \text{ and } T > T_f \\ 0, RH \leq RH_{TH} \text{ or } T \leq T_f \end{cases}$

Material Reactivity (kinetics) Chloride Reaction Sulfur Dioxide Reaction $K_i = \exp\left(\frac{\Delta H}{kT}\right) [A_{CL} T^{\alpha CL} f_{Cl}(T,RH) f(T,Cl) + A_{SO2} T^{\alpha SO2} f_{SO2}(T,RH) f(T,SO_2) + A_{O3} T^{\alpha O3} f_{O3}(T,RH) f(T,O_3)$ Ozone Reaction


Form based on Eyring equation describing the variance of the rate of a chemical reaction with temperature



AFRL SERDP Project - Cumulative Damage Model Results

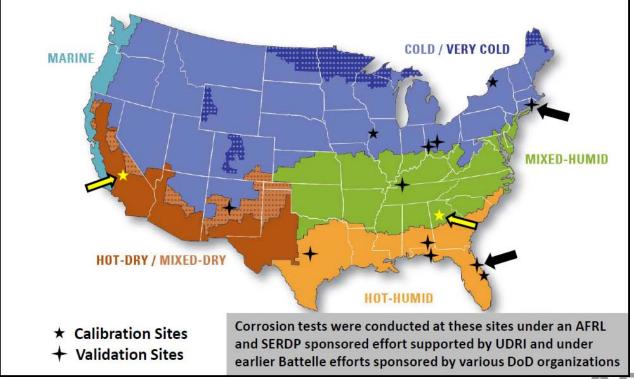

AISI 1010 Steel Hourly Corrosion Rate Predictions for Kennedy Space Center, FL (midnight 12-13-05 to midnight 12-14-05)

Kennedy Space Center, FL

60000
50000
40000
20000
4000 6000 8000 10000
Hours of Exposure

Comparison of AISI 1010 Steel Corrosion Test Points and Associated Predictions

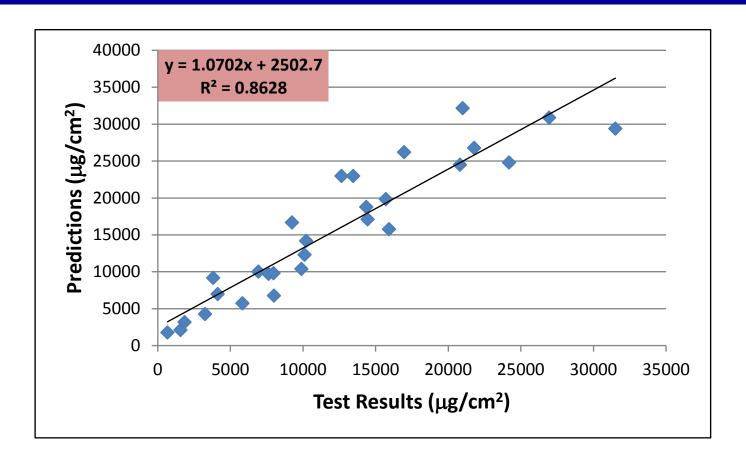
AFRL SERDP – Outdoor Test Site Locations



Calibration/Validation Sites

- Data from four different locations with diverse conditions was used to initially calibrate candidate models... later reduced to three sites
- Candidates were validated by applying them to independent proxy data for locations not used for calibration

- Final model was validated using data from seven different sites in four different climate


zones

AFRL SERDP Project - Cumulative Damage Model Results

R² value of 0.86 is higher than any published atmospheric corrosion rate prediction model intended for application at locations with diverse environmental conditions

AFRL Phase I 2014.1 SBIR Topic

2014.1 SBIR topic AF141-164, "Programmable Accelerated Environmental Test System for Aerospace Materials"

Combined environmental effects:

- Salt fog (NaCl, CaCl₂, etc.)
- Gas exposure (ozone, CO₂, etc.)
- Artificial sunlight-UV weathering
- Temperature and humidity cycling
- Dynamic mechanical loading

Four contracts awarded; final reports due ~Feb 2015:

- Systems and Materials Research Corporation
- Luna Innovations
- SAFE Engineering
- Mainstream Engineering

Goal: commercialization of apparatus, test method development, inclusion in MIL Specifications (e.g. MIL-PRF-32239, "COATING SYSTEM, ADVANCED PERFORMANCE, FOR AEROSPACE APPLICATIONS")

Programmable Accelerated Environmental Test System for Aerospace Materials

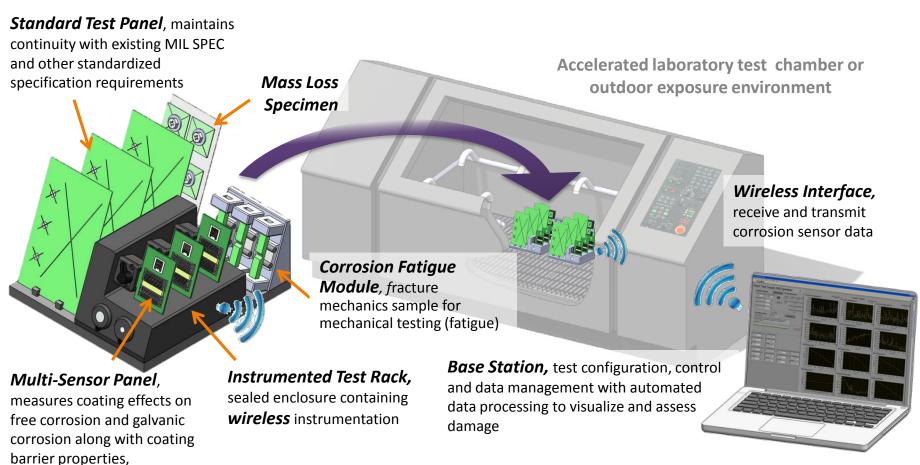
Expected Advantages:

- Improved correlation between test results and service performance
- Failure modes similar to those observed in service
- Accelerated test times compared to outdoor exposure
- Ability to simulate environmental conditions for specific operational and test locations (e.g. Hickam AFB, Daytona Beach)
- Programmable and fully automated

Existing test standards can be modified and tailored to specific applications

Example: ASTM D7869 – (Xenon Arc UV + water spray)

Step Number	Step Minutes	Function	Irradiance Set Point ^a at 340 nm W/(m²-nm)	Black Panel Temperature Set Point ⁴	Chamber Air Temperature Set Point ^A	Relative Humidity Set Point ^A
1	240	dark + spray	_	_	40°C	95 %
2	30	light	0.40	50°C	42°C	50 %
3	270	light	0.80	70°C	50°C	50 %
4	30	light	0.40	50°C	42°C	50 %
5	150	dark + spray	_	_	40°C	95 %
6	30	dark + spray	_	_	40°C	95 %
7	20	light	0.40	50°C	42°C	50 %
8	120	light	0.80	70°C	50°C	50 %
9	10	dark	_	_	40°C	50 %
10	Repeat subcycle steps	s 6 to 9 (shown in bold)	an additional 3 times (for	a total or 24 h = 1 cycle	9).	



WR-ALC SBIR Phase II.2 and SBIR CRP Project - Luna Innovations

Corrosion and Coating Evaluation (CorRES) System

POC: David Ellicks, AFRL/AFCPCO

AFRL Structural Component Corrosion Simulation (SCCS)

- Driven by ASIP requirements for fleet corrosion management, especially with emerging environmentally compliant materials and processes
- Specimen will have representative materials and geometries
- Test will combine stress with simulated aircraft environment that includes T, RH%, wet/dry cycles, UV, and background gases (ozone, CO₂, etc.)
- Deliverable will be JTP that prescribes:
 - Specimen design and construction materials
 - Finish system organic coatings, sealants, CPCs, etc.
 - Laboratory exposures to simulated environments
 - Non-destructive inspection during testing
 - Teardown and analysis protocol

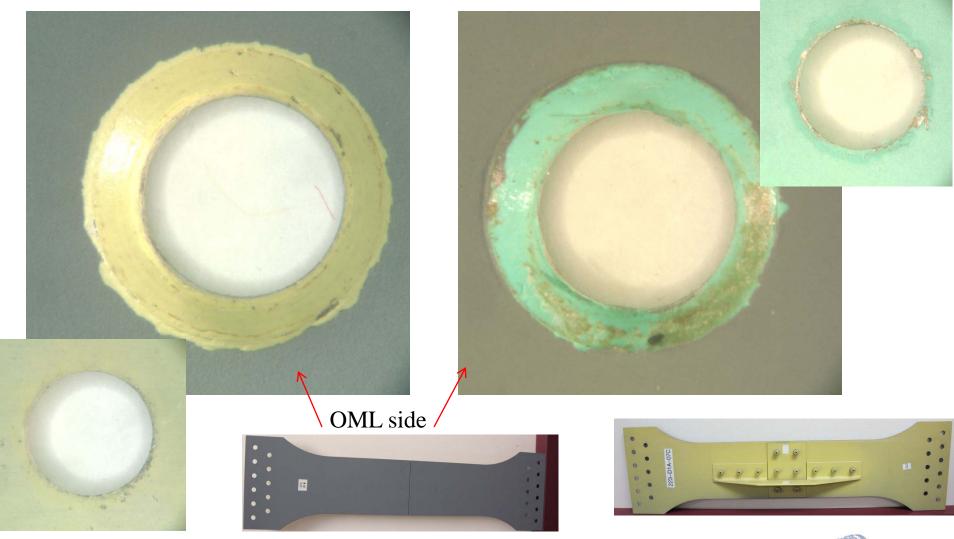
AFRL Structural Component Corrosion Simulation (SCCS) – Baseline Study

- Baseline study: representative large airframe legacy aircraft materials selected; "worst case" condition
 - Bare 7075-T6 skin, stiffener, splice plate
 - Cd-plated steel fasteners
 - Dry-installed fasteners; no fay surface sealants or CPCs
 - Chromated and non-chromated coating systems
- Specimens subjected to alternating ASTM B117 salt fog, UV (500 hrs, UVB), axial cyclic loading with temp. cycling -65°F to 85°F
- All relevant control groups (64 total specimens)
- NDI during testing with complete teardown analysis

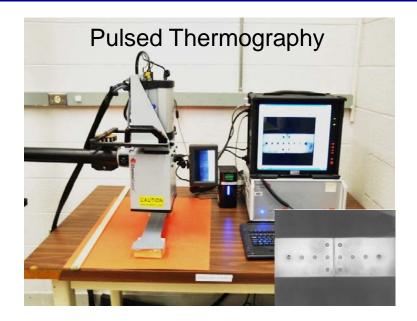
Fatigue loading:

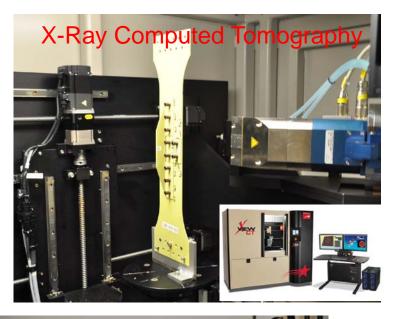
- R = 0.05, f = 5 Hz
- 11.7 ksi peak stress for 5,000 cycles per block
- 2 full temperature cycles per block (-65°F to 85°F)
- Purpose of loading is to stress the coating to initiate corrosion

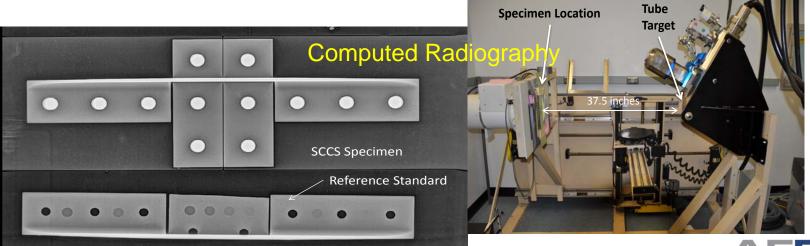
AFRL Structural Component Corrosion Simulation (SCCS)



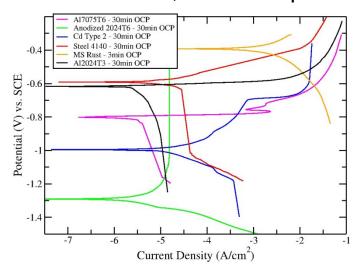
AFRL Structural Component Corrosion Simulation (SCCS)

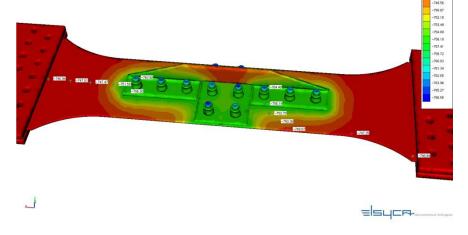






Non-Destructive Inspection




Corrosion modeling

- Commercially available software (e.g. GalvanicMaster) uses finite element models and electrochemical data input and can provide prediction of initial corrosion rates for a metallic structure assembly, given a set of assumptions
- AFRL 2014.1 Phase I SBIR "Galvanic Corrosion Prediction of Aircraft Structures" to expand capability to aluminum structure/composite joints with fasteners

 Eventual goal is to allow for dynamic prediction and include coatings, sealants, corrosion preventative compounds, etc.

Conclusions

- Air Force need/requirement for rapid (< 1 month) evaluation of aircraft corrosion protection schemes to comply with MIL-STD-1530C and hazardous material elimination demands
- No methods or test apparatus exist that can simulate service conditions/accurate degradation mechanisms in the laboratory!
- Multiple AFRL projects/programs addressing this gap
- Desired end state: accurate forecast of service performance of corrosion protection scheme via improved test protocols (informed by corrosion/coatings science and computational models).

Backup

DoD Corrosion Forum - Accelerated Corrosion Testing Working Group

- Part of DoD Corrosion Forum
 - DoD Corrosion Policy and Oversight Office (under OUSD AT&L)
 - Meet 3-4 times annually
 - Tri-service participation
- Goal is to create a product: White Paper Summary that includes:
 - Define the current state-of-the-art of subject
 - Identify gaps and needs, and recommend next steps
 - Grand vision consider the level of technical maturity or complexity of the product necessary to solve "the" DoD problem
- Five year plan detailing an investment strategy

SERDP - Cumulative Damage Modeling Approach – Dave Rose PhD Dissertation

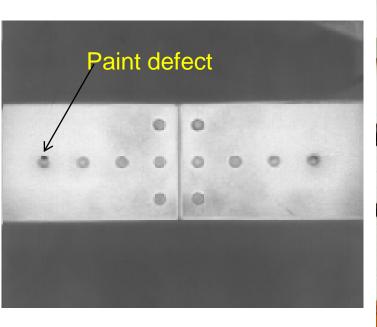
- Cumulative corrosion damage models (developed using computer simulations) consider actual variable environmental conditions...
 - Approach is analogous to random amplitude fatigue modeling
- Optimized model resulting from PhD research program focused on AISI 1010 Steel
 - Non-optimized models have also been created for copper and 2024, 6061, and 7075 aluminum alloys
 - Annual cumulative predictions (for all materials) were made for over 110
 C-5 deployment locations world-wide
- Ongoing internship program sponsored by the DoD HPC program is using a supercomputer to further optimize all models
- Cumulative predictions not limited to single locations
 - The same approach could be used to estimate environmental attack on aircraft that fly between bases
 - Would need dates and times on the ground to account for diurnal and seasonal temperature changes and related changes to humidity levels

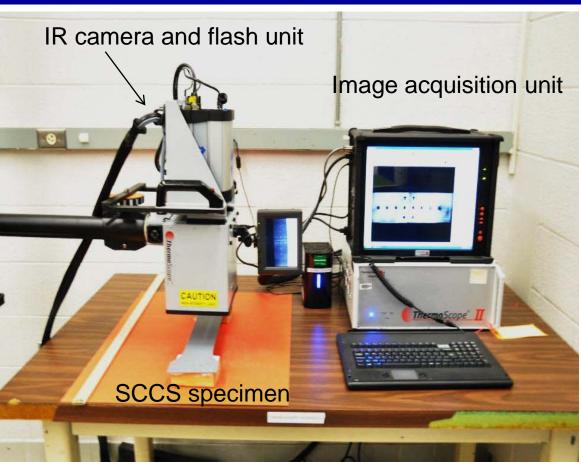
Cumulative Damage Model for Prediction of Atmospheric Corrosion

$$K_{i} = \exp\left(\frac{\Delta H}{kT}\right) [A_{CL}T^{\alpha CL}f_{Cl}(T,RH)f(T,Cl) + A_{SO2}T^{\alpha SO2}f_{SO2}(T,RH)f(T,SO_{2}) + A_{O3}T^{\alpha O3}f_{O3}(T,RH)f(T,O_{3})$$

Model Component	Description	Units	
K_{i}	Hourly corrosion rate	μg/cm ²	
A_{Cl}	Scaling factor for the chloride reaction	μg/cm ²	
A_{SO2}	Scaling factor for the SO ₂ reaction	μg/cm ²	
A_{O3}	Scaling factor for the ozone reaction	$\mu g/cm^2$	
αC1	Temperature adjustment exponent used for the chloride reaction	nondimensional	
αSO_2	Temperature adjustment exponent used for the SO ₂ reaction	nondimensional	
αO_3	Temperature adjustment exponent used for the ozone reaction	nondimensional	
T	Temperature	Kelvin (K)	
ΔН	Activation energy for the single activation energy formulation	eV/K	
K	Boltzmann constant (=8.6173 x 10 ⁻⁵ eV/K)	eV/K	
f _{Cl} (T,RH)	Temperature-Relative Humidity shape function for the chloride reaction.	nondimensional	
f _{SO2} (T,RH)	Temperature-Relative Humidity shape function for the SO ₂ reaction.	nondimensional	
f _{O3} (T,RH)	Temperature-Relative Humidity shape function for the ozone reaction.	nondimensional	
$f_{Cl}(T,Cl)$	Temperature-Contaminant shape function for the chloride reaction. Calibrated using chloride deposition measurements (mass per unit volume of rainwater*)	nondimensional	
f _{SO2} (T,SO ₂)	Temperature-Contaminant shape function for the SO ₂ reaction. Calibrated using hourly gaseous measurements (ppm) measured by automated air pollution monitoring systems.	nondimensional	
f _{O3} (T,O ₃)	Temperature-Contaminant shape function for the ozone reaction. Calibrated using hourly gaseous measurements (ppm) measured by automated air pollution monitoring systems.	nondimensional	

DoD Corrosion "Gap" Analysis

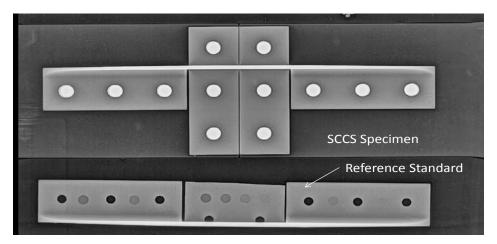

- Air Force materials and processes subject matter experts met Sep 2011 to discuss corrosion
- Identified gaps/needs:
 - Ability to translate top-level service life (hours and years in service) and sustainment requirements into selection of materials, finish systems, etc. that withstands competing pressures during design
 - Well defined and agreed-to accelerated test methods and accept/reject criteria for corrosion evaluation for a range of environments and service life requirements
 - DoD-wide evaluation & recommendation/approval for cross-cutting material substitutions, process changes, such as:
 - Material substitutions: chromated primer, chromic acid anodize, chrome plating, cadmium plating
 - Process changes: paint removal (chemical, plastic media, laser, etc.)

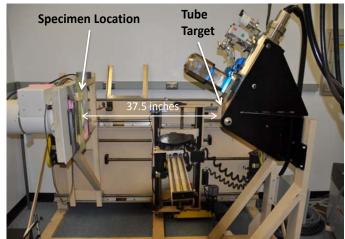


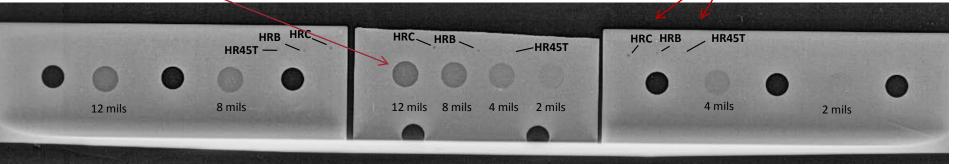
Pulsed Thermography

Pulsed Thermography— Uses pulsed thermal excitation and infrared camera to image the coated surface. Detects corrosion formation at coating to substrate interface.

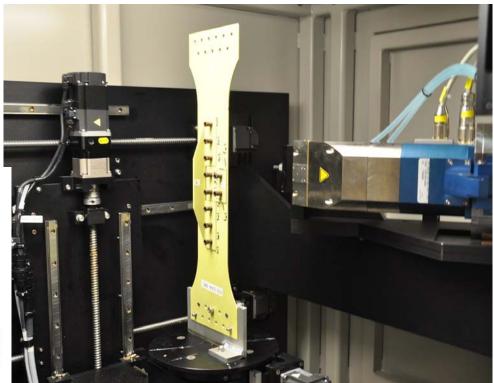
Approved for public release; distribution is unlimited (Case Number 88ABW-2014-5279)




Computed Radiography


Computed Radiography— X-ray 2D digital imaging to identify inter-layer material loss and provide rough estimates of thickness loss and area.

Flat bottom holes to calibrate thickness loss


Simulated pits (hardness tester indents)

Computed Tomography (CT) - High resolution 3D imaging of material loss. Anticipated to provide accurate measure of thickness loss within individual layers of the SCCS specimens without disassembly.

AFRL X-Ray Computed Tomography

North Star Imaging (NSI) X50 CT System (Enclosed cabinet)

- Ability to move detector closer or further away from tube/stage
- Tube is Fixed
- Scanning envelope for stage: X (up/down), Y (left/right), Tilt (+20 / -10°; 20 to detector / 10 to source), and Rotate (Continuous 360°)

•FeinFocus FXE 225.48 Micro-focus X-ray Tube

- 225 kV
- 3 mA

Perkin Elmer XRD 0822 AO Digital X-Ray Flat Panel Detector

Field of View: 8" x 8"

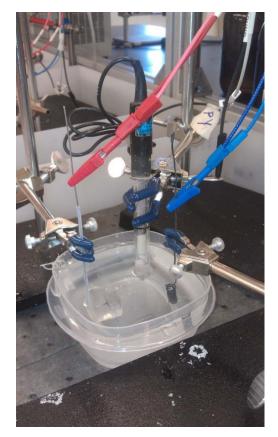
Stage

Diameter: 8 inches

Load Limit: 25 lbs.

System Resolution

- ~ 1 μm voxel size (depends on distance to x-ray tube, size of part)
- ~ 4 µm voxel size (best resolution we have achieved on a component)



Electrochemical Setup

Working Electrode

Mounted Sample

Counter Electrode

Platinum

Reference Electrode

• SCE .241V vs. SHE

